Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Psychophysiol ; 189: 57-65, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37192708

RESUMO

BACKGROUND: Microsleeps are brief instances of sleep, causing complete lapses in responsiveness and partial or total extended closure of both eyes. Microsleeps can have devastating consequences, particularly in the transportation sector. STUDY OBJECTIVES: Questions remain regarding the neural signature and underlying mechanisms of microsleeps. This study aimed to gain a better understanding of the physiological substrates of microsleeps, which might lead to a better understanding of the phenomenon. METHODS: Data from an earlier study, involving 20 healthy non-sleep-deprived subjects, were analysed. Each session lasted 50 min and required subjects to perform a 2-D continuous visuomotor tracking task. Simultaneous data collection included tracking performance, eye-video, EEG, and fMRI. A human expert visually inspected each participant's tracking performance and eye-video recordings to identify microsleeps. Our interest was in microsleeps of ≥4-s duration, leaving us with a total of 226 events from 10 subjects. The microsleep events were divided into four 2-s segments (pre, start, end, and post) (with a gap in the middle, between start and end segments, for microsleeps >4 s), then each segment was analysed relative to its prior segment by examining changes in source-reconstructed EEG power in the delta, theta, alpha, beta, and gamma bands. RESULTS: EEG power increased in the theta and alpha bands between the pre and start of microsleeps. There was also increased power in the delta, beta, and gamma bands between the start and end of microsleeps. Conversely, there was a reduction in power between the end and post of microsleeps in the delta and alpha bands. These findings support previous findings in the delta, theta, and alpha bands. However, increased power in the beta and gamma bands has not been previously reported. CONCLUSIONS: We contend that increased high-frequency activity during microsleeps reflects unconscious 'cognitive' activity aimed at re-establishing consciousness following falling asleep during an active task.


Assuntos
Estado de Consciência , Eletroencefalografia , Humanos , Sono/fisiologia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6293-6296, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892552

RESUMO

A microsleep (MS) is a complete lapse of responsiveness due to an episode of brief sleep (≲ 15 s) with eyes partially or completely closed. MSs are highly correlated with the risk of car accidents, severe injuries, and death. To investigate EEG changes during MSs, we used a 2D continuous visuomotor tracking (CVT) task and eye-video to identify MSs in 20 subjects performing the 50-min task. Following pre-processing, FFT spectral analysis was used to calculate the activity in the EEG delta, theta, alpha, beta, and gamma bands, followed by eLORETA for source reconstruction. A group statistical analysis was performed to compare the change in activity over EEG bands of an MS to its baseline. After correction for multiple comparisons, we found maximum increases in delta, theta, and alpha activities over the frontal lobe, and beta over the parietal and occipital lobes. There were no significant changes in the gamma band, and no significant decreases in any band. Our results are in agreement with previous studies which reported increased alpha activity in MSs. However, this is the first study to have reported increased beta activity during MSs, which, due to the usual association of beta activity with wakefulness, was unexpected.


Assuntos
Eletroencefalografia , Vigília , Lobo Frontal , Humanos , Lobo Occipital , Sono
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3196-3199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018684

RESUMO

Attention lapses (ALs) are common phenomenon, which can affect our performance and productivity by slowing or suspending responsiveness. Occurrence of ALs during continuous monitoring tasks, such as driving or operating machinery, can lead to injuries and fatalities. However, we have limited understanding of what happens in the brain when ALs intrude during such continuous tasks. Here, we analyzed fMRI data from a study, in which participants performed a continuous visuomotor tracking task during fMRI scanning. A total of 68 ALs were identified from 20 individuals, using visual rating of tracking performance and video-based eye-closure. ALs were found to be associated with increased BOLD fMRI activity partially in the executive control network, and sensorimotor network. Surprisingly, we found no evidence of deactivations.


Assuntos
Atenção , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Estudos Longitudinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...